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Abstract
The carbon intensity (CI) of corn ethanol, the primary renewable fuel used in transportation, has
been actively researched and quantified over the last three decades. Reliable estimates of greenhouse
gas (GHG) emissions for corn ethanol are important since these values help determine significant
policy and market decisions on state, national, and international levels. We reviewed well-to-wheel
GHG life cycle analyses (LCAs) for corn ethanol and evaluated models, input data, and results for
farming, fuel production, co-product credit, land use change (LUC), transport of feedstock and
fuel, tailpipe, and denaturant. Compared to earlier analyses, recent LCAs for corn ethanol contain
updates to modeling systems and data that reflect: (a) market-driven changes in corn production
that lowered the intensity of fertilizer and fossil fuel use on farms; (b) more efficient use of natural
gas and recent electric generation mix data for energy consumed at ethanol refineries, and (c) LUC
analyses based on hybrid economic-biophysical models that account for land conversion, land
productivity, and land intensification. LCAs that include these latest developments yield a central
best estimate of CI for corn ethanol of 51.4 gCO2e MJ−1 (range of 37.6–65.1 gCO2e MJ−1) which is
46% lower than the average CI for neat gasoline. The largest components of total CI are ethanol
production (29.6 gCO2e MJ−1, 58% of total) and farming practices net of co-product credit
(13.2 gCO2e MJ−1, 26%), while LUC is a minor contributor (3.9 gCO2e MJ−1, 7%). Market
conditions that favor greater adoption of precision agriculture systems, retention of soil organic
carbon, and demand for co-products from ethanol production may lower the CI of corn ethanol
further. Continued refinement of models to account for co-products, conservation of soil carbon,
and direct and indirect LUC is expected to produce ever more accurate estimates in the future.

1. Introduction

The Renewable Fuel Standard (RFS) program,
authorized by the Energy Policy Act of 2005, aims to
reduce greenhouse gas (GHG) emissions, expand the
nation’s renewable fuels sector, and reduce reliance
on imported oil [1]. The RFS required that transport-
ation fuels sold in theUnited States contain 7.5 billion
gallons (BG) of renewable fuels by 2012 [2]. In 2007,
the Energy Independence Security Act expanded the
RFS (referred to as RFS2) and required transportation

fuels to contain 36 BG by 2022, with 15 BG coming
from conventional biofuels and 21 BG from advanced
biofuels [3].

Ethanol produced from corn starch (hereafter
‘corn ethanol’) is currently the primary conventional
renewable fuel used in transportation fuels [4]. Eth-
anol demand in the United States increased from
3.6 BG in 2004 to 14.4 BG in 2019 [5]. Given this
significant expansion, accurate characterization of the
GHG profile of corn ethanol is important for evalu-
ating impacts of the RFS and related low carbon fuel
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initiatives. Estimates for the carbon intensity (CI) of
corn ethanol over the past three decades range from
approximately 105 grams of carbon dioxide equival-
ent emission per megajoule of energy (gCO2e MJ−1)
in 2009 to approximately 52 gCO2e MJ−1 in more
recent years [2, 6–14]. The estimates published since
2010 represent a reduction of approximately 20% to
40% in GHG emissions relative to conventional 2005
gasoline, the benchmark comparison in life cycle ana-
lyses (LCAs) published by the Environmental Pro-
tection Agency (EPA) and the United States Depart-
ment of Agriculture (USDA) [2, 7]. Identifying the
basis of these estimates and reasons for the differ-
ences among them is important because the CI val-
ues are used to inform significant policy and mar-
ket decisions on state, national, and international
levels.

To address this need, we conducted a state of
the science review of the CI for corn ethanol in the
United States and derived an evidence-based central
CI estimate and credible range as of 2020. We com-
pared our result toCI values for corn ethanol reported
in generally accepted, widely used LCAs published as
of 2010 and identified the principal reasons for any
notable differences observed. This review of CI for
corn ethanol is intended to inform analyses of the role
for corn ethanol as a transportation fuel in the decar-
bonization of the United States economy and to facil-
itate communications on biofuel production, policy,
and use.

2. Methods

We searched the peer-reviewed and grey literature to
identify existing well-to-wheel LCA analyses, models,
parameter values, and data on overall corn ethanol CI
and its components for the United States. We focused
on well-to-wheel LCAs because they use a generally
accepted approach for assessing GHG impacts of a
transportation fuel and examine each stage of corn
ethanol production and use [15]. We also focused on
stand-alone analyses of LCA components to capture
the latest developments in LCA models and the asso-
ciated input parameters. To supplement the literature
review, we interviewed over two dozen biofuel LCA
experts in academia, government, not-for-profit, and
commercial organizations in the United States and
Canada. This search strategy yielded 23 LCA models
[2, 7–14, 16–26] and over 30 supporting publications
that we used to develop a structure for subsequent
critical review and analysis.

We consolidated the numerous LCA components
into nine emission categories: farming, co-product
credit, fuel production, land use change (LUC), rice
methane, livestock, fuel and feedstock transport,
denaturant, and tailpipe. Preliminary review of the
data showed that farming and co-product credits, fuel
production, and LUC account for over 90% of the

CI of corn ethanol. For each of those major categor-
ies we: (a) critically reviewed previously developed CI
estimates; (b) evaluated and recalibrated inputs and
assumptions to reflect the current state of the science;
and (c) selected models and parameters deemed to
provide the most reliable results based on our ana-
lysis of their strengths and weaknesses (described in
the results). The screening process generally produced
fewer than ten CI values for each emission parameter,
all of which we considered equally likely and valid.
We defined the minimum and maximum values as
the range of credible values for each parameter and
the midpoint between the minimum and maximum
values as the central best estimate. Information on
methods employed for each of the major categories
is provided next.

For LUC, we critically reviewed 26 CI values
published since 2008 and evaluated the underly-
ing agro-economic model, economic data year, yield
price elasticity (YDEL), and incorporation of land
intensification [2, 7–10, 12–14, 27–40]. We assigned
a binary indicator of current best practice (yes or
no) to each LUC model or parameter using cri-
teria informed by peer-reviewed literature, empir-
ical analysis, and input from our panel of external
experts. Next, we selected the CI outputs for inter-
national LUC (iLUC), domestic LUC (dLUC), and
total LUC from the sources that met our criteria
for best practice. We also calculated an updated
dLUC emission value using the recently released 2020
Argonne National Lab (ANL) Carbon Calculator for
LandUseChange fromBiofuels Production (CCLUB)
model. We summed the values for iLUC and dLUC
to develop a central estimate and credible range for
total LUC.

For farming, we primarily drew upon analyses
and data in the Greenhouse Gases, Regulated Emis-
sions, and Energy Use in Transportation (GREET)
model, the most widely used tool and database over
the prior 10 years for assessing GHG emissions from
corn ethanol in the United States [41]. We reviewed
recent GREET-based assessments [7, 9, 10, 12–14]
and compared their emission estimates to calibrated
data from the Ecoinvent database version 3.5 [42].We
selected Ecoinvent as a useful and transparent data-
base to thoroughly assess farming emissions because:
(a) its data sources and assumptions are well doc-
umented; (b) it is publicly available; and (c) when
used in conjunction with LCA software, it allows for
assessment of process contributions, identification of
key drivers of emissions, determination of the impact
of assumptions and parameters on the analysis, and
scenario analysis. We calibrated the Ecoinvent data to
reflect current farming practices more accurately. We
determined the range and central estimate of farming
emissions from the parameter values in GREET and
Ecoinvent. To account for farming co-product credits,
we followed methods in accordance with the Interna-
tional Organization for Standardization (ISO) 14044
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standard for LCAs and determined a credible range
and central estimate [43].

For ethanol production, we relied upon docu-
mented energy emissions factors and data on regional
electricity grid mixtures and process fuels used to
power refining and co-product operations. We eval-
uated fuel production model assumptions used in
well-to-wheel LCAs and compared them to current
processes of the United States corn ethanol refining
industry. Following the model evaluation, we derived
a range and central estimate for fuel production emis-
sions and validated our estimates using data from an
ANL 2018 survey that collected responses from 65
corn ethanol dry mill facilities located across 17 states
in the United States [44].

For the remaining direct GHG emissions cat-
egories (fuel and feedstock transport, tailpipe, and
denaturant emissions), we derived a range and central
estimate from the information provided in the selec-
ted attributional and consequential LCAs included in
our analysis. Attributional LCAs consider the direct
emissions associatedwith the full supply chain of corn
ethanol production and its consumption [2]. Con-
sequential LCAs consider direct as well as indirect
emissions from potential changes to resources (e.g.
rice and livestock) expected to result from changes
in the production or consumption of corn ethanol
[2]. To calculate the CI of corn ethanol in our study,
we followed an attributional approach (i.e. included
direct emissions), with the addition of consequential
LUC emissions, since those emissions have been his-
torically considered as large contributors to the CI
of corn ethanol [2, 7, 10, 27]. Thus, we calculated
the total CI of corn ethanol by summing the central
estimates for seven emission categories (LUC, farm-
ing, co-product credit, fuel production, fuel and feed-
stock transport, tailpipe, and denaturant), as well as
the upper and lower bounds of the credible ranges.

3. Results

All well-to-wheel GHG LCAs identified by our liter-
ature search were produced by government organ-
izations or investigators, while studies on specific
components of LCAs, such as LUC and farming emis-
sions, were primarily published by academic-based
investigators. Of the former, we identified three LCAs
issued by California Air Resources Board (CARB) [8–
10]; one by EPA [2]; two by USDA [7, 26]; and annual
reports fromANL for 2010–2020 [11–14, 16–25]. The
total CI values for corn ethanol from most of those
LCAs are presented as a time series in figure 1, along
with contributions from the three principal com-
ponents: corn production and transportation (i.e.
farming), ethanol production and transportation,
and LUC. The plot demonstrates two-fold variabil-
ity among CI values for corn ethanol over the 20 year
period, but also convergence toward lower CI values

for corn ethanol in total and among each of the prin-
cipal components.

Examination of figure 1 shows that some of the
variability among estimates of total CI over time is
explained by differences in system boundaries of the
LCAs. The LCAs released by ANL from 1990 through
2005 only consider GHG emissions arising directly
from the life cycle of corn ethanol, i.e. from farm-
ing and ethanol production, whereas LCAs published
after 2005 also consider emissions that could occur
indirectly in response to changes in corn ethanol pro-
duction and demand, i.e. LUC [2]. Expanding the sys-
tem boundary to include LUC increases the CARB
and EPA estimates of total CI for corn ethanol by 40%
to 55% over the combined CI of farming and eth-
anol production [2, 8–10]. In comparison, the ANL
and USDA estimates of CI associated with LUC are
lower and equivalent to approximately 15% to 25%
of the combined CI for farming and ethanol produc-
tion [7, 11–14]. Estimates for LUC CI are reviewed in
section 3.1.

Further examination of figure 1 shows a consist-
ent, but not monotonic, decrease in CI for farming
and ethanol production which also explains a por-
tion of the variability in total CI values over time.
Estimates of the CI for both farming and ethanol
production decreased by approximately 50% from
peaks of 34 gCO2e MJ−1 and 64 gCO2e MJ−1 in
1990, respectively [6]. The decrease in farming emis-
sions is primarily a result of practice improvements,
such as a 35% reduction in nitrogen fertilizer use
and 40% reduction in fossil fuel consumption from
1990 to 2005 [40]. The reduction in GHG emissions
from ethanol production stems primarily from more
efficient use of energy at corn ethanol plants with
energy use intensity dropping by approximately 50%
(15 to 7.5 gigajoules per cubic meter of ethanol) from
1990 to 2010 [40]. Except for the analysis by CARB
in 2015, CI estimates published after 2010 have con-
verged on approximately 30 gCO2e MJ−1 for eth-
anol production and 13 gCO2e MJ−1 for farming,
with the latter including a co-product credit from
displacement of conventional animal feeds such as
corn, soybean meal, and urea by distillers grain sol-
ubles (DGS) generated as a by-product of ethanol
production.

We review variability of the CI estimates for LUC,
farming, ethanol production, and remaining categor-
ies in the remainder of this paper. Those evaluations
focus on LCA analyses published as of 2010 and rel-
evant peer-reviewed papers. These inclusion criteria
exclude earlier LCAs from ANL and CARB that are
superseded by more recent analyses, while capturing
the only LCA published by EPA and key publications
on LUC and petroleum-based gasoline. In addition,
we excluded ANL LCAs prior to 2013 since they were
not available in a transparent format, and their LCAs
from 2013 and 2015 since they are incorported into
CARB’s 2015 and USDA’s 2018 analyses, respectively.
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Figure 1. Timeline of estimated corn ethanol life cycle GHG emissions for 1990 through 2020 with projections out to 2022.

We selected LCAs by ANL we thought to be repres-
entative of more recent practices. We also excluded
USDA’s 2017 LCA since their 2018 analysis was an
amended and updated analysis which relied upon the
same ANL 2015 modeling.

Results from the LCAs as of 2010 included in
our analysis are summarized in table 1. Aggreg-
ate CI scores for corn ethanol range from 52.1 to
78.3 gCO2e MJ−1, including the two projections for
2022. The net CI for farming, ethanol production,
and co-product credits comprise approximately 70%
of the total CI in each analysis. Transportation of feed-
stock and ethanol as well as tailpipe emissions from
end-user vehicles were also similar across the LCAs
and together account for about 4 gCO2e MJ−1 and
7% of total CI. The LCAs differed in the remaining
emissions categories. LUC CI varied four-fold among
individual analyses, from 6.7 to 26.3 gCO2e MJ−1.
Emissions associated with addition of a denaturant to
ethanol were considered in only two of the LCAs and
indirect effects on rice methane emissions and live-
stock emissions were considered in only three of the
LCAs. We examine these emission categories in the
following sections, beginning with LUC.

3.1. Land use change (LUC)
We identified 26 CI values for LUC of corn eth-
anol published since 2008. As shown in figure 2,
these values decreased from 104 gCO2e MJ−1 to
generally less than 10 gCO2e MJ−1 from 2008 to
2020 [2, 7–10, 12–14, 27–40]. The LUC values appear
to be converging although a moderate degree of

variability remains amongmodels and analyses. Vari-
ability among the LUC estimates stem primarily from
differences in four major elements that comprise
these CI values: the agro-economic model, economic
data year, YDEL, and land intensification. Our evalu-
ation of these elements is presented next and details
are provided in tables S.1–S.4 (available online at
stacks.iop.org/ERL/16/043001/mmedia) in the sup-
plemental materials.

3.1.1. Agro-economic models
Agro-economic models predict demand for agricul-
tural commodities globally in response to changes
in supply and are used to assess LUC following
increases in production of biofuels [45]. The LCAs
for corn ethanol that we reviewed rely upon one
of three agro-economic models: Forestry and Agri-
cultural Sector Optimization Model (FASOM), Food
and Agriculture Policy Research Institute (FAPRI),
and Global Trade Analysis Project-Biofuels (GTAP-
BIO). While having a common endpoint, these mod-
els differ in their geographic scope, method used to
predict land conversion, and consideration of land
cover categories. These characteristics and others
translate to comparative strengths and weaknesses of
the three models.

As shown in table S.1, EPA (2010) relied upon
FASOM to characterize LUC within the United States
(dLUC) and FAPRI elsewhere in the world (iLUC)
[2]. FASOMwas developedwith a focus on dLUC and
has not been widely adopted in LCAs for corn ethanol
[46, 47]. Further examination of table S.1 shows that
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Figure 2. Timeline of estimated GHG emissions associated with corn ethanol-related LUC, 2008–2020.

FAPRI was used in three analyses that we reviewed,
one for iLUC only and for total LUC in the other
two. GTAP-BIO was used to estimate dLUC, iLUC
and total LUC in the remaining 22 analyses.

For land conversion, FAPRI predicts changes in
crop acres by country globally, but does not have land
type interactions built into the model [2]. To predict
land specific crop acres, FAPRI relies upon Moder-
ate Resolution Imaging Spectroradiometer (MODIS)
satellite imagery data which has been demonstrated
tomisclassify agricultural and non-agricultural lands,
resulting in inaccurate predictions of land types that
convert to cropland and unreliable emission estimates
associated with LUC [2, 47]. In contrast, land conver-
sion in GTAP-BIO is based upon hybrid economic-
biophysical models that account for both the quantity
and quality of available agricultural land to predict
howmuch land of each land cover category is actively
used in production and howmuch land is idle during
a specific time period [45, 48]. GTAP-BIO accounts
for climate-specific crop yields and three soil quality
indicators to generate land productivity and land sup-
ply curves that are calibrated to historical crop pro-
ductivity figures [49]. GTAP-BIO also considers mul-
tiple categories of land use, including idle cropland
and cropland pasture, that allow for application of
land use-specific GHG emission factors. This feature
is particularly important for simulating return to pro-
duction of land in the USDA Conservation Reserve
Program [50].

Based on our review of the literature, GTAP-BIO
appears to be the field-leadingmodel for LUCbecause
it addresses both dLUC and iLUC, predicts LUC for
specific land types using both economic and phys-
ical data, is incorporated into the generally accep-
ted GREET model from ANL, and has been adopted

for use in LUC analyses for the California Low Car-
bon Fuel Standard (LCFS) [51]. For these reasons,
we marked LUC estimates derived from the GTAP-
BIO model as meeting our best practice criteria
(table S.1).

3.1.2. Economic data year
The economic data year is the baseline point in time
used in agro-economic models for estimating LUC of
corn ethanol. The year of the economic data is signi-
ficant because the agro-economic model is ‘shocked’
with an expansion of a specified volume of corn
ethanol. The volumes which shock the model are
determined by the difference between 15 BG, the
RFS2 mandated volume target for conventional bio-
fuels, and the volume of ethanol produced in the
United States during the specific economic data year
[1, 52]. Three world economic data years were used
in the analyses that we reviewed: 2001, 2004, and
2011. The modeled expansion in production volume
of corn ethanol is approximately 13.25 BG for eco-
nomic data year 2001, 11.6 BG for 2004, and 1.1 BG
for 2011. Eighteen of the 26 LUC analyses that we
reviewed used 2004 as the economic data year, while
four used 2001, and one used 2011. We selected 2004
as the most appropriate economic data year for this
review, because it captures the largest period of corn
ethanol volume expansion in the United States and is
relied upon the most frequently. We marked models
using 2004 as meeting our best practice criteria (table
S.1).

3.1.3. Yield price elasticity
YDEL describes the percentage change in crop yield
per unit of land per percentage change in price for

6
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the crop and is a key driver of LUCoutputs from agro-
economicmodels [53]. The CARBLCFS expert work-
group recommended a YDEL of 0.25 for the United
States and 0.3 for Brazil and Argentina, where mul-
tiple cropping is likely to occur, and 0.175 for coun-
tries that do not practicemultiple cropping [54].Mul-
tiple cropping is defined as growing two or more
crops on the same land in the same season or year
[55]. Taheripour et al (2017) reviewed crop yield data
from 19 regions around the world and derived a
recommended YDEL range of 0.175–0.325 [35, 56].
We examined YDEL for corn reported in 20 studies
published from 1976 to 2017 and calculated a simple
average of 0.23 (table S.2) [2, 28, 34, 35, 57–66]. From
these data, we determined a YDEL central best estim-
ate of 0.25 and credible range of 0.175–0.325. Eight-
een analyses thatwe reviewed hadYDEL valueswithin
this range and we marked them as meeting our best
practice criteria (table S.1).

3.1.4. Land intensification
Land intensification is the practice of using existing
cropland more efficiently and is defined as activities
undertaken with the intention of enhancing the
productivity or profitability per unit area of land
[67]. Examples of land intensification include yield
improvement, multiple cropping, reduction of agri-
cultural land in fallow, conversion of other unused
cropland to crop production, and reduction in tem-
porary or mowed pasture [68]. According to an
empirical analysis of agricultural land use across the
globe, land intensification accounted for two thirds
(49.1/73.1 million hectares) of the observed increase
in harvests from the period 2004–2006 to 2010–
2012 rather than conversion of timberland and pas-
ture to farm land [68], while the United States corn
ethanol production increased over three-fold during
that period (4.0–13.5 BG) [5]. Similarly, an empir-
ical analysis of agricultural land from 2003 to 2013
found the ratio of harvested area over available land
area increased in 17 of the 19 worldwide regions,
indicating that land intensification increased glob-
ally rather than only in a minor fraction of locations
[56]. Another empirical study found that from 2002
to 2017, agricultural land area in the United States
declined by 38 million acres while land intensifica-
tion increased harvested area by 17 million acres and
annual ethanol production increased by 13.8 BG [5,
69]. These studies indicate that land intensification
is an important and common response to increased
demand for corn ethanol production. Only five of 26
analyses that we reviewed considered land intensifica-
tion andwemarked them asmeeting our best practice
criteria (table S.1).

In addition to reviewing previously developed
LUC estimates, we calculated an updated dLUC
CI value to incorporate the recently released 2020
CCLUBmodel developed byANL into this review and
applied land transformation parameters [33]. The

land transformation parameters considered region-
ally specific land transformation elasticities and land-
specific costs of converting pasture or forest to crop-
land [33]. We set 2004 as the economic data year and
ran the ‘Corn Ethanol 2013’ feedstock to fuel path-
way which was calibrated with land transformation
parameters. Additional inputs for the CCLUB run are
provided in the table S.3. Our analysis returned a CI
for dLUC of−2.3 gCO2e MJ−1.

The dLUC, iLUC, and total LUC CI values identi-
fied as meeting our best practice criteria are shown
in table 2. We summed the two dLUC values with
the iLUC values selected from our critical review to
determine an overall credible range of LUC of −1–
8.7 gCO2e MJ−1 from which we calculated a central
best estimate of 3.9 gCO2e MJ−1.

3.2. Farming and co-product credits
LCAs for corn adopt a cradle-to-gate scope, includ-
ing both on-farm emissions as well as those from
the full supply chains associated with on-farm pro-
cesses including fertilizer and chemical use, disturb-
ance of farming soils, and fossil fuel and electrical
energy use. LCAs published since 2010 estimate the
CI for farming differ by as much as a factor of 2 and
range from 16.0 to 34.4 gCO2eMJ−1. These estimates
are based upon versions of the GREETmodel released
from 2013 to 2020, as shown in table 1, and user-
specified values for selected model parameters. We
examined the farming components of these versions
of GREET and the modeling scenarios to determine
whether they meet our criteria for characterizing CI
of corn ethanol as of 2020.

Examination of table 1 shows that themost recent
estimate of farming CI fromCARB is 6.4 gCO2eMJ−1

lower than CARB’s prior estimate and the largest dif-
ference among all CI estimateswithin a category other
than LUC. Based on information from CARB, the
decrease is primarily attributable to adoption of lower
energy intensity for farming (6924 British thermal
unit (Btu) bushel−1 in the 2019 estimate compared
to 9608 for the 2015 estimate) and lower fertilizer
intensity (383 gallons of nitrogen fertilizer per bushel
for 2019 compared to 423 gallons bushel−1 for 2015)
[70]. For its 2019 analysis, CARB adopted the default
values that are in GREET1_2016 for these inputs [70].
According to the developers of GREET, the default
values in GREET1_2016 are significant updates to
earlier versions of GREET and are based upon new
analyses of fertilizer intensity and farming energy data
from the USDA Agricultural Resource Management
Survey (ARMS) in 2010 and 2012 [71, 72]. Changes
to these inputs will necessarily influence the overall
CI results for farming because emissions of nitrous
oxide (N2O) from cycling of nitrogen fertilizer in corn
fields, production of fertilizer, and direct energy use
for fuel and electricity are the largest components of
GHGemissions for growing and harvesting corn [40].
Based on this information, we determined the CARB
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Table 2. LUC analyses, models and outputs identified as meeting current best practice for LCA of corn ethanol.

Study Year Parameter LUC value (gCO2e MJ−1 ) Merits

USDA—2018—ICF 2018 dLUC −1.9 • GTAP-BIO model calibrated with
land transformation parameters

• 2004 economic data year
• Land-specific conversions
• Acceptable YDEL

This analysis 2020 dLUC −2.3 • GTAP-BIO model
• 2004 economic data year
• Land-specific conversions
• Acceptable YDEL; based on empirical
data

• 2020 carbon calculator for land use
change from biofuels production

USDA—2018—ICF 2013 iLUC 8.0 • GTAP-BIO model
• 2004 economic data year
• Land specific conversions
• Acceptable YDEL
• Calibrated output with empirical data
that included land intensification

USDA—2018—ICF 2013 iLUC 1.3 • GTAP-BIO model
• 2004 economic data year
• Land-specific conversions
• Acceptable YDEL
• Calibrated output with empirical data
that included land intensification

Taheripour 2017 LUC 8.7 • GTAP-BIO model
• 2004 economic data year
• Land-specific conversions
• Acceptable YDEL; based on empirical
data

• Included land intensification
parameter based on empirical data

ICF: ICF International.

dLUC: Domestic land use change.

iLUC: International land use change.

LUC: Total land use change.

GTAP-BIO: Global Trade Analysis Project-Biofuels.

gCO2e MJ−1: Gram carbon dioxide equivalent emission per megajoule [7, 33, 35].

Table 3. Farming parameters ranked by magnitude of impact on farming emissions.

Emissions (gCO2e MJ−1)

Categorya Farming model parameters Default Ecoinvent Adjusted Ecoinvent GREET models

Soil CO2 from urea and lime 0b 0b 0b–2.8
Irrigation energy 4.2 0.8 0b

Harvest drying 16.7 2.0 0b

Seed drying 4.5 3.3 0b

Small (1–5 gCO2e MJ−1)

On-farm fossil fuel use 3.3 3.3 −2.7
Chemicals, supply chain 8.7 8.7 7.9–11.2
N2O emissions from soils 11.1 11.1 10.2–13.9

Large (5–15 gCO2e MJ−1)
to Very large
(>15 gCO2e MJ−1) Co-product credit — — −12.1 to−13.5c

a Categories are based on adjusted Ecoinvent and GREET models.
b 0 indicates that at least one source either omitted this model parameter or reported it as part of on-farm fossil fuel use.
c Included the default method use in GREET.

—Ecoinvent does not specify a co-product credit.

gCO2e MJ−1: Gram carbon dioxide equivalent emission per megajoule.

References [6, 7, 9, 10, 12–14, 42].
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2015 CI value for farming does not meet our best
practice criteria and omitted it from further analysis.
For similar reasons, we also omitted the EPA 2010
projection for farming emissions of 16 gCO2e MJ−1

projected to occur in 2022. And lastly, we omitted the
USDA projection for farming emissions in 2022 of
21.3 gCO2eMJ−1 because it assumes numerous farm-
ing practice improvements that have yet been demon-
strated to be widely adopted, including residue and
tillagemanagement, nutrientmanagement, and cover
crops.

To further evaluate the reliability of the farm-
ing results from these LCAs, we reviewed farming CI
using a source of data independent of GREET, the
Ecoinvent database of GHG emissions [42]. Table 3
shows the GREET and Ecoinvent farming model
parameters ranked according to their contribution to
the overall farming emissions. The major contribut-
ors to farming emissions are chemical supply chain,
N2O emissions from nitrogen fertilizer and nitrogen
in crop biomass, and co-product credits.

Ecoinvent uses data from studies by the National
Renewable Energy Lab (NREL) and USDA as inputs
for modeling United States corn production [73–75].
Ecoinvent contains the central estimates of average
quantities of input per unit of output from the NREL
and USDA studies, with two exceptions: irrigation
and on-farm drying of corn grain after harvest. We
evaluated both of those model inputs using current
data on average United States corn farming practices.

The Ecoinvent dataset reflected full use of irrig-
ation, with a water use intensity of 0.24 m3 water
per kilogram (kg) of corn produced. However, not all
United States farms use irrigation and national aver-
age water use intensity varies from year to year. We
analyzed data from the USDA’s ARMS database for
all available survey years since 1996 [76]. The frac-
tion of irrigated corn acres ranged from 11.5% to
15.7% across these years. We combined ARMS data
on water inputs with data on annual corn production
from the USDA Feed Grains database [77] to generate
water use intensities of 0.03–0.06 m3 kg−1 since 2000.
We observed a declining trend during that period.
The central estimate of this range, 0.045 m3 kg−1,
represents 20% of the irrigation intensity input
(0.24 m3 kg−1) used in Ecoinvent. Using our updated
water use intensity estimate, we calculated the adjus-
ted Ecoinvent CI contribution of irrigation to be
0.84 gCO2e MJ−1 instead of the original estimate of
4.2 gCO2e MJ−1.

Analogous to its treatment of irrigation, the Eco-
invent model assumed that 100% of corn grain
required active fuel-based drying plus fans to lower
grain moisture content from 39% at harvest to 14%
at storage [42]. Farmers may also use passive dry-
ing (without fuel) in the field prior to harvest, which
yields a lower starting moisture content. We com-
pared the assumption of 39%moisture at harvest with
historical data on corn moisture at harvest for the

United States from 2010 to 2017 [78]. Annual aver-
ages in the United States ranged from 16.3% in 2010
to a high of 19.7% in 2013, with an 18% average over
the entire period. A target moisture level of 14% for
storage is also conservatively low; CARB and EPA cite
storage moisture content levels of 15% and 15.5%,
respectively [79, 80]. We adjusted the model to reflect
themeasured harvestmoisture level of 18%, and a tar-
getmoisture content of 15%, and retained the conser-
vative assumption that 100% of farmers pursue active
drying to achieve this moisture reduction. The res-
ult is an adjustment of drying’s CI contribution from
16.7 gCO2e MJ−1 to 2 gCO2e MJ−1.

The Ecoinvent database is transparent at the unit
process level, with over 1000 separately examinable
processes contributing to the full supply chain for
United States corn production. Upon examination
of the models we detected that the supply chain for
seed included a duplicate instance of seed drying; dry-
ing with the same amount of fuel use and emissions
appeared both prior to, and then after, aggregation
of the seeds at market. Removing this error caused a
minor adjustment to the CI contribution of seed dry-
ing, from 4.54 gCO2e MJ−1 to 3.27 gCO2e MJ−1.

After updating data in Ecoinvent to reflect cur-
rent United States corn farming practices in relation
to irrigation, harvest drying, and seed drying, the CI
for corn farming decreased by nearly 20 gCO2e MJ−1

(figure 3). The resulting adjusted Ecoinvent CI of
29.2 gCO2e MJ−1 was within ±6 gCO2e MJ−1 of the
recent GREET-based CIs (figure 4).

To account for farming co-product credits, we
followed methods used in the well-to-wheel LCAs
and determined a credible range and central estim-
ate in accordance with the ISO 14044 standard for
LCA [43].

We considered the emission co-product credit
from DGS in our analysis, since DGS is a co-product
of corn ethanol production and is sold to the animal
feed market. The method selected for allocating co-
product credits in LCAs can make a major difference
on the CI estimates of co-product credits. A recent
comparison found that co-product credits ranged
from−8 to−24 gCO2e MJ−1 based on the allocation
method used [6]. The ISO 14044 standard for LCAs
recommends a hierarchy of methods for addressing
co-product credits [43]. The preferred approach is the
system expansion or displacement method followed
by causal modeling, and then by allocation of pro-
cess burdens among co-products based on paramet-
ers such as the co-product shares of process revenues.

Even when using the preferred method (i.e. the
displacement method), there will still be some vari-
ability in co-product credits for the corn-based eth-
anol life cycle for two reasons; first, because the DGS
can be used to displace a variety of products, whose
corresponding footprints (and thus co-product cred-
its to the ethanol system) vary considerably; and
second because corn ethanol production also yields
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Figure 3. Comparison of farming emissions produced from the default and adjusted Ecoinvent 2018.

Figure 4. Comparison of sources of farming emissions across models produced from adjusted Ecoinvent and GREET.

co-products which can displace alternative produc-
tion. DGS sold as animal feed can displace urea,
and corn and soybean meal in different quantities
depending on which type of livestock is being fed
[9, 10, 12–14]. Ecoinvent data show the carbon foot-
print of soybeanmeal to be 0.07 kg CO2e kg−1, which
is more than twice the value of 0.032 kg CO2e kg−1

given for corn meal as energy feed [42]. In addition,
corn ethanol production yields at least two additional
byproducts: food grade CO2, which can displace
alternative production of food grade CO2 [81]; and
corn oil, which can substitute for other vegetable oils
[82] or can replace fossil-fuel-based inputs in applic-
ations such as asphalt paving [83, 84].
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In this analysis, we conservatively focus on the dis-
placement of feed products by the DGS co-product,
and we follow the displacement ratios given in the
GREET model for a mix of beef, dairy, swine, and
poultry feed. ANL, CARB, and USDA rely upon
the GREET displacement method ratios. EPA did
not include information on their negative emissions
associated with the DGS co-product. The negat-
ive emissions associated with displacement of feed
products by the DGS co-product produced by ANL,
CARB, and USDA using GREET range from −13.5
to −12.1 gCO2e MJ−1 (a maximum absolute differ-
ence of 1.3 gCO2e MJ−1), with a central estimate of
−12.8 gCO2e MJ−1 (table 3). We adopt the value of
−12.8 gCO2e MJ−1 which is based on the livestock-
specific displacement ratios for soybean meal, corn
and urea, for a mix of primarily beef and dairy feed,
plus 13% swine and 6% poultry [9, 10, 12–14].

In summary, our review and analysis generated
an overall range for farming emissions from 22.8
to 29.2 gCO2e MJ−1 with a central estimate of
26.0 gCO2e MJ−1, derived from recent GREET-based
analyses and our independent analysis using data
in Ecoinvent. We also considered the emission co-
product credit from DGS in our analysis and gener-
ated a central estimate of −12.8 gCO2e MJ−1 with
range of −13.5 to −12.1 gCO2e MJ−1 based on ana-
lyses from ANL, CARB, and USDA using GREET that
conform with the ISO 14044 standard for addressing
co-product credits in LCAs.

3.3. Ethanol production
LCAs for corn ethanol published since 2010 estim-
ate the CI of corn ethanol production to range from
26.5 to 32.7 gCO2e MJ−1 (table 1). GHG emissions
associated with biofuel production depend on the
types of refining processes used tomake ethanol from
corn, the energy use intensity of those processes, and
the sources and types of fuel used to provide the
power.

There are two prominent refining processes for
producing corn ethanol: dry milling and wet milling.
In dry milling, the grain kernel is ground into meal
which is followed by the starch hydrolysis and fer-
mentation processes [45]. Dry milling refineries pro-
duce ethanol,DGS, andwhen incorporated into oper-
ations, the extraction of corn oil [82]. In contrast, the
first step in wet milling is to soak grain kernel to sep-
arate the kernels from the hulls after which the ker-
nels are further separated into fiber, gluten, and starch
[85]. Wet milling refineries produce ethanol, and the
resulting fiber and gluten are processed separately to
produce feed products [85]. According to data from
USDA, approximately 91% of United States refineries
are dry milling plants and 9% are wet milling plants
[86]. Wet milling provides higher ethanol fuel yields
than dry milling [12–14], but requires more capital
investment and is estimated to be over 75% more
energy intensive [12–14, 20, 22, 87].

As shown in table S.4 in the supplemental mater-
ials, most of the analyses shown in table 1 assumed
that 89% of refineries were dry mills which is consist-
ent with the distribution of dry mill facilities in the
U.S [86, 87]. Other models, such as CARB 2015, EPA
2010, and USDA 2018 (projected for 2022) estimated
the CI for corn ethanol production assuming 100%
dry milling. According to the models, electricity con-
sumed from the grid accounts for approximately 10%
of energy needs at the refineries with the remaining
90% powered by process fuels [2, 7, 9–14, 88, 89]. In
these models, the primary process fuel is natural gas,
with a share of 72.5% to 100% of process fuel energy
use among refineries with coal accounting for the bal-
ance. Both natural gas and biomass are more energy
efficient than coal; however, biomass is not widely
used due to high fuel and capital costs [90].

The fuel production emissions produced by ANL,
CARB, USDA, and EPA are consistent with one
another with amaximumdifference of approximately
6 gCO2e MJ−1. To evaluate those values further, we
calculated production CI using data from the recently
published ANL 2018 survey of 65 corn ethanol dry
mill facilities located across 17 states in the United
States and compared the result to the ethanol pro-
duction values in table 1 [44]. The facilities surveyed
reported average consumption of 24 310 Btu of nat-
ural gas per gallon of ethanol, 0.747 kilowatt-hour of
electricity per gallon of ethanol, and no use of coal
[44]. These rates correspond to 27.8 gCO2e MJ−1 of
fuel production emissions at an average dry mill corn
ethanol facility, a value that is in the lower end of the
range of estimates produced by ANL, CARB, USDA,
and EPA. The facilities in the survey sample may not
be representative of the entire population of corn eth-
anol producers given that they are all dry mill facil-
ities and none of them reported use of coal. Non-
etheless, these recently available survey data corrob-
orate the inputs on energy use intensity and energy
type for the models that we reviewed. Based on these
observations, we find a reasonable central estimate
and credible range of CI for corn ethanol produc-
tion of 29.6 gCO2eMJ−1 and 26.5–32.7 gCO2eMJ−1,
respectively.

3.4. Other direct emission categories
The remaining GHG emission categories reviewed
and updated were fuel and feedstock transport,
tailpipe, and denaturant emissions. The fuel and feed-
stock transport category consists of emissions associ-
ated with the combustion of gasoline and diesel fuels
during the transport of corn from farm to refinery
and corn ethanol from refinery to retail station. The
tailpipe category consists of emissions from the com-
bustion of corn ethanol in transportation vehicles.
Corn ethanol-based CO2 emissions from tailpipes
are assumed to be biogenic and offset by carbon
uptake during new biomass growth [7]. Corn eth-
anol combustion also emits methane (CH4), nitrous
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oxide (N2O), and volatile organic compounds, which
are included in modeling of corn ethanol tailpipe
emissions.

CI values for fuel and feedstock transport and
tailpipe emissions across the ANL, CARB, EPA, and
USDA models average 3.4 and 0.5 gCO2e MJ−1,
respectively (table 4). Together, these two categor-
ies represent about 6% of the overall CI score
for most of the analyses. Although only a mod-
est contributor to overall CI, the CI estimates vary
by nearly three-fold for transport of feedstock and
fuel (2.2–6.0 gCO2e MJ−1) and nine-fold for tailpipe
emissions (0.09–0.83 gCO2e MJ−1). The variation
across those ranges primarily reflects two factors:
updates to the national input parameters and CA-
specific versus national input parameters. We first
address transport emissions and then tailpipe emis-
sions.

Inspection of table 4 shows that feedstock and fuel
transport emissions in the GREET models decreased
by 15% to 25% with the release of GREET1_2016.
The changes in GREET reflected a new analysis that
accounted for closer proximity of corn farms to eth-
anol plants resulting from a five-fold increase in the
number of production facilities in the Midwest corn-
growing states and a shift from truck-dominated to
rail-dominated delivery of ethanol [71]. The rapid
expansion of ethanol in gasoline across the United
States as of 2010 was the driving force for both the
proximity effect and rail effect cited in the new ana-
lysis [72]. The difference between the CARB 2019
value of 4.1 gCO2e MJ−1 and the values from ANL of
2.2–2.7 gCO2e MJ−1 stem from adjustmentsmade by
CARB to fuel economy and cargo payload of trucks,
tankers, and barges that convey ethanol [70]. In con-
sideration of these updates to GREET, we adopt a
credible range of 2.2–4.1 gCO2e MJ−1 and central
value of 3.1 gCO2e MJ−1 for CI of fuel and feedstock
transport.

Additional inspection of table 4 shows that CI for
tailpipe emissions in the CARB 2015 and CARB 2019
LCAs are approximately five-fold lower than corres-
ponding CI from ANL, EPA, and USDA. This dif-
ference reflects the lower emission standards in Cali-
fornia compared to United States standards accord-
ing to CARB [70]. The projection for 2022 made by
EPA in 2010 is an outlier compared to the relatively
consistent estimates issued by ANL since 2016, there-
fore we omitted the EPA value from further consid-
eration. Given these results, we adopted a credible
range of 0.09–0.55 gCO2e MJ−1 with a central value
of 0.3 gCO2e MJ−1 for tailpipe emissions.

The final emission category that we assessed is
the small amount of denaturant added to ethanol,
approximately 2% by volume, to render it undrink-
able [2, 92]. Denaturant was considered by CARB in
its 2015 and 2019 LCAs but has yet to be included
in LCAs from EPA, ANL, or USDA. CARB calcu-
lates the emissions associated with denaturant using

a formula with CI inputs that include farming, co-
product credit, fuel production, and fuel and feed-
stock transport. The calculated denaturant value is
inversely related to the CI of the other emission cat-
egories. The California GREET 2.0 model estimated
a denaturant CI of 0.55 gCO2e MJ−1 [9] and the
CA-GREET 3.0 model estimated a denaturant value
of 1.12 gCO2e MJ−1 [10]. We used the CA-GREET
3.0 approach to estimate CI for denaturant associ-
ated with the central estimate CI values from our ana-
lysis and computed a value of 2.0 gCO2e MJ−1. We
used the minimum and maximum of these three val-
ues to define the credible range for denaturant CI
as 0.55–2.0 gCO2e MJ−1 with a central estimate of
1.3 gCO2e MJ−1.

3.5. Carbon intensity of corn ethanol
Using the central estimates and ranges of LUC, farm-
ing, co-product credit, fuel production, fuel and
feedstock transport, tailpipe, and denaturant emis-
sions described in the preceding sections, we estim-
ate the CI of corn ethanol to be 51.4 gCO2e MJ−1,
with an overall range of 37.6–65.1 gCO2e MJ−1

(figure 5). Our findings for fuel and corn production
and transportation are consistent with the decreasing
and converging trend of GHG emission estimates that
is apparent in the scientific literature (figure 1).

4. Discussion

We reviewed peer-reviewed publications and grey
literature reports on well-to-wheel GHG LCAs and
studies on specific components of LCAs that char-
acterize CI for corn ethanol produced in the United
States. ANL, CARB, USDA, and EPA are the four
major organizations that produce LCAs for corn eth-
anol in the United States. Their estimates of corn
ethanol CI decreased by approximately 50% over
the prior 30 years although not uniformly. Estim-
ates forGHGemissions from farming and production
of ethanol fall within 20% of each other among the
organizations. In addition, estimates of CI for farm-
ing and ethanol production that we produced from
two independent sources of information corrobor-
ated the results from the four government organiz-
ations. However, treatment of LUC is less consistent
among the organizations, with variability of approx-
imately 70% among organizations. Our review indic-
ates that estimates for CI of LUC from ANL and
USDA are based upon more reliable methods and
data than those from EPA and CARB. Overall those
estimates produced by ANL and USDA of CI con-
verge to a central best estimate of approximately
55 gCO2e MJ−1. Notably, some authors have gener-
ated lower and higher estimates of CI for corn ethanol
than those evaluated here, but those assessments are
for specific combinations of regions and technologies
while our aim was to characterize emissions for the
United States [93, 94].
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Figure 5. GHG emission categories and total CI of corn ethanol.

Modeled emissions from corn production and
transport (including farming, feedstock transport,
and co-product credit) decreased by approximately
14 gCO2e MJ−1 between 1990 and 2010 and stabil-
ized in the last decade, with all recent estimates from
CARB, ANL, USDA, and EPA in the range of 10.5–
24.4 gCO2e MJ−1 (figure 1). The downward trend of
corn production emissions is explained by improve-
ments in farming practices and LCA methods. In the
past few decades, corn yield has increased and fertil-
izer application per bushel of corn has decreased as
a result of crop and nutrient management strategies,
such as use of nitrogen inhibitors and precision agri-
culture [7, 76, 95]. According toUSDANational Agri-
culture Statistics Service, the use of nitrogen fertil-
izer in grams per bushel of corn decreased by over
20% in themajority of ‘United States Corn Belt’ states
(Illinois, Indiana, Iowa, Nebraska) between 2000 and
2018 [96]. Farm energy use decreased by approxim-
ately 8% on a per bushel basis from 2005 to 2010, a
downward trend that is likely to have continued since
2010 [97]. The GREET model used to characterize
farming emissions has also improved to quantitatively
account for soil organic carbon, which tends to lower
GHG emissions from corn farming [98]. Inclusion of
co-product credit associated with corn oil as a biod-
iesel feedstock contributed to the downward trend of
corn production and transport emissions as well [99].

GHG emissions associated with farming practices
net of co-product credit constitute a relatively large
share (26%) of the total CI for corn ethanol, therefore,
additional improvements that reduce the cradle-to-
gate footprint of corn production would improve the
CI of corn ethanol further. Greater adoption of tech-
niques for precision-based application of fertilizers
offer significant economic as well as environmental
benefits [100, 101]. The total cradle-to-farmgate CI

for corn produced from states in the upper Midw-
est, which supply the bulk of corn to ethanol produc-
tion, could be reduced in the region by up to 74% by
adopting conservation tillage, reducing nitrogen fer-
tilizer use, and implementing cover crops [102]. The
implementation of land management practices such
as cover crops and manure application can increase
storage of organic carbon in soil [103]. Results of
improved management practices for soil organic car-
bon (SOC) have been shown to depend on regionally
variable factors including climate and soil character-
istics, indicating the need and opportunity to pursue
improvement management practices on a regionally
tailored basis [103]. Biofuel policies that give farmers
and corn ethanol producers incentives to adoptenvir-
onmentally beneficial practices, are expected to result
in wider use of those practices. In addition to reflect-
ing current SOC practices, we recommend that future
GREETmodels update inputs on energy sources used
in corn production, since the current GREET model
relies upon a 2015USDA study that used farming data
from 2010 [97]. One other recommendation arising
from our review is that Ecoinvent update its dataset
on United States corn production to reflect current
average practice andmore recent data, particularly for
irrigation and grain drying.

Modeled emissions from ethanol produc-
tion and transport decreased by approximately
27 gCO2e MJ−1 between 1990 and 2010 and stabil-
ized in the last decade, with all recent estimates from
CARB, ANL, USDA, and EPA falling within 28.5–
34.1 gCO2e MJ−1 (figure 1). Models used to estimate
fuel production emissions have also been updated
to include more current inputs for electrical genera-
tionmix data andmore accurate distribution of plant
types. However, the latest fuel production models
still use electrical generation mix datasets that are
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either dated or based on estimated projections; and
assume the distribution of fuel types (e.g. natural gas,
coal) and plant types (e.g. drymill, wetmill) are either
100%drymill and natural gas or have remained static
since 2016 (table S.4). We recommend future studies
validate the energy input and plant distribution data
as they play a significant role in the determination of
fuel production GHG emissions.

Since GHG emissions associated with producing
ethanol account for 58% of the total CI for corn eth-
anol, additional production improvements related to
co-products (DGS, CO2, and corn oil) and alternat-
ive energy sources (biomass, biogas, and wind and
solar energy) can play a significant role in redu-
cing the overall CI of corn ethanol. Transitioning to
100% wet DGS can result in about−10 gCO2e MJ−1,
due to savings in avoided energy associated with
drying DGS [104]. Carbon dioxide, a co-product
from the corn ethanol fermentation process, can be
sequestered or captured and sold for uses elsewhere,
such as in the beverage industry, and could result
in up to −30 gCO2e MJ−1 by avoiding CO2 emis-
sions being released or generated [81, 104]. Corn
oil as a co-product can also lead to carbon cred-
its if it displaces soy oil and if it is used as a pave-
ment additive, which could extend the useful life of
asphalt pavements [83, 84]. The use of alternative
energy sources such as biomass, dairy or swine biogas,
and solar or wind energy can result in up to approx-
imately −20 gCO2e M−1 [13], −65 gCO2e MJ−1

[105], and −5 gCO2e MJ−1 [79] CI credits, respect-
ively. We estimated the maximum potential CI credit
for biomass by substituting natural gas as the energy
source used for fuel processing and drying of DGS
in GREET [106]. We assumed biomass to be bio-
genic and its emissions as negligible, and did not
consider the emissions associated with the processing
and transport of biomass, nor the impact of corn
stover as biomass on fertilizer use. We estimated the
potential CI credit associated with biogas using 2019
LCFS pathways submitted to CARB for review [105],
but did not consider logistical concerns regarding the
supply and transport of sufficient biogas to refiner-
ies. We determined the CI potential of wind or solar
power using CA-GREET [79], which includes wind
and solar as emission free energy source options. The
use of wind and solar power is not a feasible option
to replace major energy sources such as natural gas
but could be applied to specific refinery processes.
We recommend continued research on the feasibil-
ity and impact of alternative co-product production
processes, energy sources, and process fuels such as
biomass, biogas, and wind and solar energy.

Modeled emissions from LUC decreased from
30.0 to 14.0 gCO2e MJ−1 between 1990 and 2010
and have continued to decrease for LCAs from USDA
and ANL (figure 1), due to modeling and land man-
agement improvements. Modeling improvements
include refinements to GTAP-BIO, the field-leading

agroeconomic model, use of appropriate YDEL val-
ues (0.175–0.35), and inclusion of land intensifica-
tion. Data-driven improvements to the GTAP over
the years include updated regional YDELs, land trans-
formation elasticities, land intensification paramet-
ers, and yield improvements; and the inclusion of cro-
pland pasture as a land type for the United States,
Brazil, and Canada [35]. Models with these improve-
ments have resulted in lower LUC values [7, 35]. For
example, an adjustment to the land transformation
parameter was made to account for the costliness
associated with converting forest to cropland, relat-
ive to converting grassland [48, 107, 108]. The costs
and resources associated with transforming forest
to cropland, tend to deter farmers and result in
the conversion of more feasible land types such as
pasture. Including this realistic and logical obser-
vation in land transformation parameters results in
a decreased likelihood of converting forest to crop-
land, ultimately lowering modeled LUC values [107].
ANL’s dLUC model, CCLUB, has also been modified
to include land management practices related to till-
age and selection of soil depth, which influence SOC,
and county-specific corn yield records of the modern
agricultural period [33, 109]. Incorporating domestic
land management practices that increase SOC and
actual yield data play a role in lowering GHG emis-
sions associated with LUC.

LUC emission estimates from ANL and
USDA (including a prediction for 2022) from
the last decade fall within our estimated range
of −1.0–8.7 gCO2e MJ−1. Estimates from CARB
(19.8 gCO2e MJ−1) and EPA (26.3 gCO2e MJ−1 pre-
dicted for 2022) fall outside our range, resembling
LUC values from LCAs prior to 2011 (figure 1), and
are based on modeling approaches that do not rep-
resent current best practices. EPA used two different
models that have limitations compared toGTAP-BIO:
(a) FASOM,which focuses on dLUC and has not been
widely adopted in LCAs for corn ethanol; and (b)
FAPRI, which predicts non-specific changes in crop
acres and requires external input of MODIS satellite
data to assign land types, resulting in unreliable emis-
sion estimates associated with LUC [47]. CARB used
the GTAP-BIO model, but three out of five YDELs
used for modeling (0.05, 0.10, 0.35) [53] fall outside
our determined best practice range (0.175–0.325),
and may not be representative of actual corn crop
yields in response to price change. CARB also used
an agro-ecological zone emission factor (AEZ-EF)
model, which tends to generate higher LUC emissions
primarily because of its treatment of cropland pas-
ture. Emission factors in LUC modeling are used to
assign carbon stock changes and emissions associated
with reported LUCs. AEZ-EF assumes emissions from
converting cropland pasture to cropland release 50%
of the emissions associated with converting pasture to
cropland [110]. However, emissions associated with
conversion of cropland pasture to cropland are likely
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to be lower due to periodic tilling since cropland pas-
ture typically ‘shifts back and forth between cropland
and grassland depending on the net returns’ [111].
Additional emission factormodels used in LUCmod-
eling are Woods Hole, Winrock International, and
CCLUB [33, 112, 113]. In conducting our review,
we did not identify a comprehensive analysis which
focused on the evaluation and utility of different LUC
emission factors. To improve the characterization of
LUC, we recommend future studies conduct a thor-
ough review of the various emissions factors to assess
the validity of their assumptions and functions.

Compared to estimates in earlier LCAs, more
recent analyses indicate that LUC accounts for a small
percentage (7%) of the overall CI of corn ethanol.
A limitation of the current approach for predicting
LUC in LCAs is that the resulting GHG emissions
are presented as a static number. In reality, changes
in land use, such as clearing of forest for farmland
used for biofuel, create a carbon debt that can be
repaid over time as biofuel displaces petroleum or
other fossil fuels [27, 114]. The payback period is
determined by themagnitude of the original debt and
the size of the carbon dividend from the biofuel. In
this context, the LUC carbon impact is a dynamic
property that starts out as a large source, and eventu-
ally becomes a net carbon sink. The original analyses
based upon this ‘debt-dividend’ framework sugges-
ted a payback period for corn ethanol of 48–167 years
based upon a relatively small biofuel dividend. The
latest LUC estimates described here suggest that the
current biofuel dividend has increased since those
early analyses. Thus, we recommend future research
to update earlier analyses of carbon debt and dividend
for corn ethanol as the timescale for ethanol produc-
tion to become a net carbon sink from land use con-
siderations may be considerably shorter than prior
estimates. The updated analyses should incorporate
recent data on the carbon content of Midwest prairie
land and the net CI of corn ethanol farming and pro-
duction relative to gasoline refined from petroleum.

Our analysis reviewed LCAs and LCA compon-
ents conducted by researchers that primarily relied
upon the GREET model, or a version of the GREET
model (e.g. CA-GREET). It is important to acknow-
ledge other international modeling tools that are
available for developing a GHG emissions profile for
corn ethanol, such as GaBi [115], GHGenius [116],
and RenovCalc [117]. A comparative analysis of
international LCA modeling tools would strengthen
understanding of the CI for corn ethanol. Addition-
ally, our findings pertain to the impacts from current
and modest increases in production and consump-
tion of corn ethanol on a gCO2e MJ−1 basis. A full
consequential analysis is necessary to assess the effect
of major increases in production and consumption
(e.g. increasing the percent volume of ethanol in gas-
oline from 10% to 20%). A full consequential analysis
would address constraints in the production system

including land use availability, farming efficiencies
(e.g. yield elasticity), and resources (e.g. water), as
well as additional indirect emissions from changes
in rice crop and livestock production and manage-
ment. EPA and USDA estimated those two categor-
ies to contribute between 1.5 and 2.7 gCO2e MJ−1

[2, 7]. As part of a sensitivity analysis, we determined
that including those two emission categories would
increase our CI estimate by approximately 4%.

LCAs should also expand upon the latest empir-
ical analyses of land use over time and across regions
to characterize potential indirect LUC more accur-
ately [56, 68, 69, 118]. Themost comprehensive study
we drew upon was conducted by Babcock and Iqbal
in 2014 [68]. We recommend additional empirical
LUC studies to be conducted that rely on recent and
updated data sources, such as the Food and Agricul-
ture Organization of the United Nations [119] and
satellite data.

Our analysis on the state of the science of GHG
emissions associated with the well-to-wheel life cycle
of corn ethanol yielded a CI central estimate of
51.4 gCO2e MJ−1. We compared our central estim-
ate to the average CI of neat gasoline, which ranges
from 93 to 101 gCO2e MJ−1 [2, 120, 121], with an
average of approximately 96 gCO2e MJ−1. Relative to
the average CI of conventional gasoline, our central
estimate for corn ethanol is 46% lower. These res-
ults are relevant to policy and commerce because CI
estimates generated from LCAs are used to make sig-
nificant biofuel policy and market decisions on state,
national, and international levels. We recommend
that comparative analyses of the CI for transporta-
tion fuels clearly note the system boundaries of the
respective analyses as our review demonstrates that
the consequential components of a LCA can strongly
influence the resulting CI estimates.

5. Conclusion

Assessments of GHG intensity for corn ethanol have
decreased by approximately 50% over the prior
30 years and converged on a current central estim-
ate value of approximately 55 gCO2e MJ−1 which is
over 40% lower on an energy equivalent basis than
gasoline produced from crude oil. The decrease in
GHG intensity is attributable to updates in model-
ing systems and input data that reflect market-driven
changes in farming practices that lowered the use of
fertilizer and fossil fuel on a per bushel basis, more
efficient use of natural gas and more recent electric
generation mix data for energy consumed at ethanol
refineries, and market-based analyses of LUC. Cur-
rent estimates from organizations in the United States
are primarily based upon the GREET modeling sys-
tem and show that direct emissions associated with
production of corn and ethanol from corn, includ-
ing co-product credits for animal feed and corn oil,
account for approximately 80% of the total CI. Two
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independent sets of data relating to farming and eth-
anol production that we examined corroborate the
results from GREET. Compared to farming and eth-
anol production, estimates of CI associated with LUC
are more variable among recent LCAs, however, the
most comprehensive evaluations indicate emissions
are lower than 10 gCO2eMJ−1. Recent research indic-
ates that market conditions that favor greater adop-
tion of precision agriculture systems, retention of
organic carbon in soil, and demand for co-products
from ethanol production have the potential to reduce
the CI of corn ethanol. Continued development and
refinement of models to account for co-products,
farming practices such as conservation of soil carbon,
and direct and indirect LUC is expected to improve
the accuracy of CI estimates in the future.
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